Энергосовет - энергосбережение и энергоэффективность
в Яndex
Главная >> Библиотека технических статей >> Возобновляемые источники энергии >> >>

Анонсы

06.12.17 14 декабря пройдет заседание Рабочей группы по разработке предложений для внесения изменений в Правила и Методику осуществления коммерческого учета тепловой энергии, теплоносителя подробнее >>>

01.12.17 7 декабря Круглый стол "Опыт и перспективы применения теплонасосных установок в России" подробнее >>>

23.11.17 29 ноября в Москве состоится круглый стол на тему «Критерии эффективности проектов модернизации ТЭЦ» подробнее >>>

Все анонсы портала

Новое на портале

06.12.17 Эксперты обсудили критерии эффективности проектов модернизации ТЭЦ подробнее >>>

01.12.17 Создание крупных систем альтернативной энергетики: из опыта Финляндии // статья подробнее >>>

13.11.17 Юбилейный 50-й выпуск журнала "ЭНЕРГОСОВЕТ" посвящен конференции "Теплоснабжение-2017. Функционирование в новых условиях" подробнее >>>

07.11.17 Страна поставлена "на счётчик" // видео подробнее >>>

Все новости портала

Еще по теме Возобновляемые источники энергии

Автономному дому – свою микро-ТЭЦ

Николай Ясаков, г. Новороссийск, energetika-veka@yandex.ru

image001.jpgОб авторе: инженер-энергетик, 15 лет проработал на промпредприятиях: в энергослужбах (последние годы в должности гл. энергетика), затем - начальник производственного отдела, гл. механик, гл. инженер, а потом на конструкторской работе - ведущий конструктор, руководитель конструкторского подразделения по механизации и автоматизации производства и новой технике, в завершении - гл. конструктор научно-исследовательского и проектного института. Имеет два десятка изобретений в области энергетики и экологии.       

В статье показан вариант решения задачи комплексного энергоснабжения «малых» объектов от возобновляемых источников энергии с помощью единой энергоустановки – микро-ТЭЦ, работающей по гибридной схеме от ВИЭ.

 

С появлением новых разработок можно показать пример энергоснабжения «малых» объектов с помощью единой энергоустановки – микро-ТЭЦ, работающей по гибридной схеме от возобновляемых энергоисточников.

            Такая энергоустановка, несмотря на свои малые размеры и мощность преобразуемой энергии, вполне способна обеспечить усадебный дом, дачу, небольшой туристический лагерь, другие подобные объекты и электричеством, и теплом, и горячей водой, и даже подогретым воздухом для сушки материалов и всяких выращенных или собранных плодов, ягод, фруктов, грибов и трав.

             Конструкция микро-ТЭЦ подробно описана в публикации изобретения (патент РФ № 2608448, 2017 г.). Она представляет собой единый модуль, все компоненты которого могут быть изготовлены в заводских условиях, что позволит освоить их массовое производство и облегчить монтаж на месте их установки. В таком варианте она представлена на рис. 1.

image004.jpg

            Корпус теплоаккумулятора 1 является одновременно основанием и ветротепловой установки (ВТУ) 2 и солнечного коллектора-нагревателя (СКН) 3. Панели СКН расположены на освещаемых солнцем стенках теплоаккумулятора, которые выполнены из листового металла и являются лучепоглощающей поверхностью. Они имеют со стороны облучения селективное покрытие и прозрачное теплоизолирующее ограждение. Панели могут быть оснащены расположенными над ними козырьками 4 с зеркальной нижней поверхностью, являющимися к тому же и защитой панелей от атмосферных осадков. Угол наклона козырьков должен обеспечивать максимальное дополнительное солнечное облучение панелей в зимний период.

            Остальная поверхность теплоаккумулятора, кожух теплообменника турбинного агрегата, а также трубопроводы внешнего теплообменного контура имеют теплоизоляционное покрытие, например, известными органосиликатными составами «Силтэк», «Броня», «Корунд» и т.п.

 Предпочтительным вариантом ВТУ в конструкции рассматриваемой микро-ТЭЦ представляется только что запатентованный в России (патент № 2623637) ветротепловой преобразователь с вертикальным валом, имеющий корпус, выполненный в форме улитки, турбину с ротором в виде усеченного конуса, оснащенным желобчатыми лопастями, а выходным каналом является раструб 5, расположенный над корпусом турбины и одновременно являющийся флюгером для ориентации ветроустановки входным конфузором 6 навстречу ветровому потоку. И конфузор, и раструб выполнены в виде жестких каркасов с легкой оболочкой.

            Широкий фронт захвата потока воздуха с его сжатием и последующим закручиванием в улитке корпуса, где он одновременно воздействует на все лопасти турбины и затем удаляется через раструб (в основном – силой разрежения, создаваемого в нем обтекающим ветром), обеспечивает предельно высокий к.п.д. преобразования энергии ветра в механическую энергию.

            Входной конфузор ветропреобразователя оснащен своеобразной защитой от запредельных ветровых нагрузок, при которых его боковые стенки синхронно раскрываются и переходят во флюгерное положение, но ветроустановка продолжает работу на «малом фронте» ветрового потока. В ближайшей безветренной паузе стенки под действием пружин возвращаются и фиксируются в исходном положении (см. вид сверху – на рис. 1).

            Механическая энергия превращается в тепловую теплогенератором в виде осевого вентилятора с изменяющимся наклоном лопастей в зависимости от скорости ветрового потока, датчик 7 которого связан с механизмом изменения их наклона, чем и поддерживается постоянство оптимального соотношения скоростей вращения турбины и вихревого потока (примерно 1:2). При кратковременных перерывах ветра лопасти складываются в диск, нагрузка на турбине резко падает и она продолжает вращение по инерции до возобновления ветра, сокращая время на свою раскрутку.

            Далее, часть тепловой энергии преобразуется в электрическую паротурбинным блоком 8 с электрическим генератором 9.

            Для нормальной работы микро-ТЭЦ необходимо в верхней части внутреннего пространства теплоаккумулятора иметь температуру воздуха, значительно превышающую температуру кипения рабочей жидкости при рабочем давлении пара. И такая температура создается ветротепловой установкой и солнечным коллектором-нагревателем. При использовании чистого воздухопроницаемого теплоаккумулирующего материала предельная температура его нагрева ограничена только балансом между запасенным да поступающим теплом, создаваемым первичными преобразователями энергии, и его расходом с учётом всех теплопотерь.

            При этом нагрев теплоаккумулирующего материала по всему его объёму осуществляется принудительной – от ВТУ – и естественной – от СКН – циркуляцией воздуха. Принудительная циркуляция нагревает материал, как в известной аэродинамической сушильной камере, только температура нагрева может намного превышать требуемую для испарения влаги, которой в нашем теплоаккумуляторе, конечно же, нет. А солнечные панели с их минимальными внешними теплопотерями только усилят при солнечном облучении этот нагрев. При наличии отражающих козырьков этот эффект возрастает. Такая «гибридная» система нагрева, использующая не единственный источник энергии, позволяет сократить перерывы в пополнении теплового ресурса аккумулятора, уменьшить его размеры при сохранении расчетной надежности энергоснабжения.

             Итак, внутри теплоаккумулятора в пространстве с максимальной температурой нагрева воздуха указанными преобразователями расположен парогенератор (см. рис. 2), состоящий из корпуса котла 1 с оребрённой поверхностью, коническим либо сферическим днищем 2, буферной ёмкостью 3, пароперегревателем 4 в виде коаксиальной камеры между стенкой корпуса и внутренним теплоизолированным цилиндром 5, оснащенной кольцевым перепускным клапаном 6 (например, из кремнийорганического полимера). Котел оснащен внешней теплоизолированной оболочкой 7 с рядом входных отверстий в её верхней части и вентилятором 8 внизу. Над парогенератором (это уже вне теплоаккумулятора) расположен турбинный агрегат 9. Паровая турбина 10 оснащена датчиком 11 передаваемого крутящего момента (с конструкцией, например, сходной с известной предохранительной пружинно-кулачковой муфтой осевого типа) Он кинематически связан с золотниковым устройством 12 в виде поворотного кольца с отверстиями и соосными с ними сопловыми элементами 13. Днище турбинного отсека также имеет коническую форму с кольцевым углублением в центральной части, где расположено «безнасосное» устройство возврата конденсата, сходное по конструкции с известным объёмным дозатором. Оно состоит из втулки 14 с расположенными по окружности сквозными полостями и плотно прилегающими к ней торцевыми дисками со смещенными по кругу – верхними относительно нижних – отверстиями (см. вид А). Сама втулка связана с турбиной понижающей передачей.

image003.jpg

            С валом турбины связан вентилятор (насос) 15 внешнего теплообменного контура.

            Ввод микро-ТЭЦ в рабочий режим производится включением вентилятора. Поток горячего воздуха нагревает стенки и днище котла до кипения жидкости – в её строго определенном объёме, закрывающем только поверхность днища. Повышенным давлением образовавшегося пара часть жидкости перемещается в буферную ёмкость, сжимая в ней воздух до такого же давления. При этом уровень жидкости за её пределами понижается и изменяющаяся площадь теплопередачи от днища автоматически поддерживает этот баланс. По достижении минимального рабочего давления пара он, преодолевая силу обжима кольцевого клапана, проходит через отверстия внутреннего цилиндра в пароперегреватель и с увеличенной за счёт перегрева скоростью поступает в расположенные по кругу сопловые элементы. При этом в отсутствие нагрузки на генераторе турбина ускоренно набирает расчётные обороты. С появлением на ней возрастающей нагрузки зубчатый торец втулки отжимает венец датчика крутящего момента, который через симметрично расположенные рычажные механизмы поворачивает кольцо золотникового устройства, увеличивая подачу пара в сопловые элементы. Это (вместе с другими известными способами) обеспечивает постоянство частоты вращения турбинного вала.

            При оптимальном соотношении скорости на выходе из сопловых элементов потока пара и окружной скорости лопаток турбины он, передав им свою кинетическую энергию, с остаточной скоростью попадает на внутреннюю стенку теплообменника 16, превращаясь в конденсат (см. выноску на рис. 2), который стекает по ней и далее – по конической поверхности днища корпуса турбинного агрегата – к устройству возврата конденсата. Здесь через отверстия он заполняет полости вращающейся с малой скоростью втулки, плотно закрытые в этот момент нижним диском, а в следующий момент, когда втулка повернута на некоторый угол и заполненные конденсатом полости оказывается плотно закрытыми сверху, они проходят над нижними отверстиями и конденсат стекает в котел по периметру буферной ёмкости, охлаждая её и предотвращая кипение в ней жидкости, чем поддерживается там режимное давление воздуха.

            Следует сказать, что предельно короткий контур обращения рабочего тела в условиях замкнутого пространства котла и турбинного агрегата исключают его потери и, следовательно, устраняют необходимость постоянного контроля и пополнения его объема.

            Теплообменник турбинного агрегата передает «сбросное» тепло для обогрева помещений. При умеренной температуре наружного воздуха он может работать в открытом контуре, обеспечивая тем самым и их усиленную вентиляцию. С похолоданием этот контур можно частично либо полностью замкнуть. А в особо холодную погоду (либо при пониженном расходе электроэнергии) можно добавлять тепло на обогрев непосредственно от теплоаккумулятора. В летнее же время можно использовать тепло от теплообменника турбинного агрегата для других нужд (сушка материалов, сельхозпродуктов, нагрев бассейна и т.п.).

 Следует добавить, что с появлением новых («беспаровых») тепломеханических преобразователей (ТМП) вполне возможно их использование вместо вышеописанного паротурбинного блока (притом даже и при более низких температурах в теплоаккумуляторе). В этом плане представляет интерес более совершенный компактный ТМП с жидкостным рабочим телом по патенту RU №2613337, 2017 г. с повышенным (по крайней мере – на порядок) к.п.д., чем у рассмотренного в вышеупомянутой статье ТМП (патент RU №2442906, 2012 г.).

            И уж самый последний вариант ТМП – только что опубликованный «Русский двигатель», (патент РФ № 2623728), отличающийся тем, что его ротор выполнен в виде цилиндрического биметаллического барабана, посаженного на упругую втулку с теплообменными каналами, примыкающими к золотниковому устройству, при этом барабан оснащен контактирующими с его поверхностью роликами. Он компактен, способен работать в режиме когенерации, имеет, как и его аналоги, систему рекуперации тепловой энергии.

            Оба ТМП бесшумны, безопасны и практически не требуют никакого обслуживания.

 

печатьраспечатать | скачать бесплатно Автономному дому – свою микро-ТЭЦ, Ясаков Николай
скачать архив архив.zip(2142 кБт)


Rambler's Top100

Авторские права на размещенные материалы принадлежат авторам
Тел.(495) 360-66-26 E-mail:
© Портал ЭнергоСовет.ru - энергосбережение, энергоэффективность, энергосберегающие технологии 2006-2017
Возрастная категория Интернет-сайта 18 +
реклама | карта сайта | о проекте | контакты | правила использования статей

Регулятор отопления для зданий для устранения перетопов подробнее