Энергосовет - энергосбережение и энергоэффективность
в Яndex
Главная >> Библиотека технических статей >> Экономия тепловой энергии >> >>

Анонсы

17.11.17 Заседание Рабочей группы по синхронизации отраслевого и коммунального законодательства по вопросам начислений за ресурсы и коммунальные услуги подробнее >>>

13.11.17 Шорт-лист Премии WinAwards Russia/«Оконная компания года-2017»! подробнее >>>

13.11.17 Инновационные технологии обсудят на панельной дискуссии конгресса в Санкт-Петербурге подробнее >>>

Все анонсы портала

Новое на портале

13.11.17 Юбилейный 50-й выпуск журнала "ЭНЕРГОСОВЕТ" посвящен конференции "Теплоснабжение-2017. Функционирование в новых условиях" подробнее >>>

07.11.17 Страна поставлена "на счётчик" // видео подробнее >>>

02.11.17 Энергоэффективный капремонт: миф или реальность? // интервью подробнее >>>

20.10.17 На заседании в Правительстве РФ обсудили энергосбережение и повышение энергетической эффективности подробнее >>>

Все новости портала

Еще по теме Экономия тепловой энергии

Паровая винтовая машина как средство энергосбережения

Д.т.н. С.Р. Березин, профессор,
д.т.н. В.М. Боровков, профессор,
заведующий кафедрой промтеплоэнергетики,
Санкт-Петербургский государственный
политехнический университет(СПбГПУ);
к.т.н. В.И. Ведайко, главный конструктор,
А.И. Богачева, генеральный директор,
ЗАО «Эко-Энергетика», г. Санкт-Петербург

Введение

В настоящее время в России и в мире получают все большее распространение новые технологии энергосбережения. К ним, в частности, относится использование энергии пара для выработки электроэнергии в котельных и перевода их в мини-ТЭЦ. Масштабы применения этой технологии энергосбережения достаточно велики. Котельные с паропроизводительностью от 10 до 100 т/ч обычно используются в производственно-отопительных целях и принадлежат небольшим предприятиям бумажной, лесопильной, пищевой, текстильной, кожевенной и многих других отраслей промышленности.

Параметры производимого пара в котельных сильно различаются в зависимости от назначения использования пара. Потребление пара существенно меняется по времени года (летний и зимний режимы) и от времени суток. Давление пара на выходе из котла зависит как от потребностей технологии предприятия, так и от степени изношенности котлов. Например, котлы широкого промышленного применения чаще всего проектируются на давление пара 13 ати, а для изношенных котлов, которых в настоящее время очень большое количество, по предписанию Ростехнадзора давление ограничивается 7-8 ати. В свою очередь, для нужд технологии обычно требуется давление пара 4-6 ати, а для отопления - 1,5-2 ати с расходом пара 3-6 т/ч. Таким образом, складывается ситуация, когда часто в котельных имеется неиспользуемый перепад давления пара 3-6 ат (1 ат=0,98.105 Па - прим. ред.) с расходом 6-50 т/ч. Полезное применение этого потенциала позволяет получить дополнительную электрическую мощность 200-1500 кВт. Для этого пар после котла направляют в расширительную машину, например, паровую турбину, связанную с электрогенератором. В результате можно получить дешевую электроэнергию (дополнительный расход топлива и эксплуатационные расходы незначительны). Однако, использование паровой турбины в этом случае малопродуктивно, поскольку в указанной области небольших мощностей она имеет ряд известных недостатков.

Наиболее привлекательными по совокупности свойств в данном диапазоне мощности являются паровые винтовые машины (ПВМ). Паровая винтовая машина по сути является новым типом парового двигателя. ПВМ разработана в России, она уникальна, аналогов ее за рубежом нет. На конструкцию ПВМ, ее узлов и систем получено около 25 патентов в России и за рубежом. В диапазоне мощности 200-1500 кВт ПВМ практически по всем показателям значительно превосходит обычную лопаточную паровую турбину.

ПВМ является перспективной основой для создания мини-ТЭЦ, особенно в районах Крайнего Севера и в районах к ним приравненных. Здесь возможна замена отопительных и производственных котельных и дизельных электростанций на мини-ТЭЦ, использующие местные топливные ресурсы: уголь, торф, отходы лесопереработки.

Устройство и принцип действия ПВМ

ПВМ является машиной объемного действия. В корпусе вращаются рабочие органы - винты роторов (рис. 1). Роторы выполнены из стали, на них нарезаны винты асимметричного профиля. Синхронизирующие шестерни, установленные на роторах, исключают возможность касания профилей винтов друг с другом. Выходной вал ведущего ротора соединен с электрогенератором (подробнее о конструкции ПВМ см. «НТ» № 2, 2006 г. - прим. ред.).

Принцип действия ПВМ показан на рис. 2. Пар высокого давления из котла поступает в ПВМ через впускное окно в корпусе с одного торца роторов. После заполнения паром канавки между зубьями происходит отсечка пара, и при дальнейшем вращении роторов в канавке (парной полости) происходит объемное расширение порции пара. В конце расширения канавка сообщается с выпускными окнами в корпусе на другом торце роторов. Отработанный пар поступает в тепловую сеть для нужд технологии или для отопления.

Технические преимущества ПВМ перед лопаточной паровой турбиной:

■ высокий КПД расширения (0,7-0,75) в широком диапазоне режимов (конденсат, образующийся при расширении пара, заполняет зазоры между рабочими органами, тем самым, уменьшая протечки пара и повышая КПД);

■ простота конструкции, высокая ремонтопригодность;

■ высокий межремонтный ресурс обусловлен отсутствием взаимного касания роторов и соответственно отсутствием механического износа;

■ ПВМ может работать на паре любой влажности, в то время как минимальная степень сухости пара на выходе лопаточных турбин составляет 88%. Влажный пар вызывает эрозионный износ лопаток. Как известно, у подавляющего большинства котлов малой производительности отсутствуют пароперегреватели, поэтому этими котлами вырабатывается сухой насыщенный пар. При расширении его в проточной части турбины степень сухости падает, что создает опасность преждевременного выхода установки из строя;

■ неприхотливость к качеству пара, наличию в нем частиц окалины, грязи;

■ габариты и масса ПВМ меньше, чем у лопаточной турбины аналогичной мощности. Это важно при размещении ПВМ в действующем здании котельной;

■ высокая маневренность при изменении режима работы, быстрый пуск и останов;

■ высокая эксплуатационная надежность и безопасность при возникновении аварийной ситуации.

Характеристики энергоагрегатов на базе ПВМ

Основное отличие энергоустановок с ПВМ от имеющихся на рынке паротурбинных энергоустановок заключается в следующем. Паротурбинные установки спроектированы практически на одно единственное сочетание расхода и давлений пара на входе в машину и на выходе из нее. Данное сочетание условий по пару определяет мощность машины. В то же время условия по пару в различных котельных могут существенно различаться и с течением времени меняться, поэтому маловероятно, чтобы они совпали с расчетными условиями работы машины.

Конструкция ПВМ позволяет в широком диапазоне приспосабливаться к условиям работы конкретной котельной и, как следствие, может покрывать весь наиболее часто встречающийся диапазон мощности от 200 до 1500 кВт. Данное обстоятельство значительно расширяет область применения ПВМ.

В таблице приведены параметры пара (давление на впуске ПВМ, на выпуске, расход) наиболее часто встречающиеся в котельных различных предприятий, а также мощность, которую можно получить с помощью ПВМ при этих параметрах.

Каждое такое сочетание режимных параметров пара определяет мощность ПВМ. Оптимальная настройка конструкции ПВМ на определенное сочетание параметров пара осуществляется за счет подбора в широком диапазоне соответствующих конструктивных параметров ПВМ при единой базовой конструкции машины, которая определяется литейными моделями корпуса. Таким образом, ПВМ способна выработать мощность, как было указано выше, в диапазоне 2001500 кВт в любой котельной, имеющей пар с параметрами, указанными в таблице.

Энергоустановка с ПВМ может использоваться для автономного режима работы, для режима работы параллельно сети, а также для привода исполнительных механизмов (например, водяных насосов). При работе в параллельном режиме энергоустановка работает на электрическую сеть предприятия, покрывая часть его собственных нужд в электроэнергии и уменьшая тем самым ее потребление из сети. При этом обороты и частота переменного тока энергоустановки жестко привязаны к частоте сети. Мощность установки определяется перепадом давления и расходом пара через машину и регулируется дроссельным клапаном на входе в ПВМ.

ПВМ рассчитана на достаточно низкий уровень технического обслуживания, поскольку эксплуатация ее проводится персоналом котельной.

Дополнительно следует отметить некоторые требования к энергетической установке с ПВМ, выполнение которых позволит повысить конкурентоспособность данного оборудования.

1. Система автоматического управления и защиты ПВМ, основанная на микропроцессорной технике, должна учитывать различный технический уровень приборного оснащения котельных, допускать возможность работы совместно с современными АСУ ТП на базе персональных компьютеров, а также работать автономно в котельной с морально устаревшими КИП.

2. Работа ПВМ в год должна составлять не менее 6500 ч из имеющихся 8760 ч с учетом необходимого технического обслуживания оборудования котельной и перерывов в подаче пара.

Результаты опытно-промышленной эксплуатации ПВМ

В мае 2007 г. предприятием ЗАО «Эко-Энергетика» совместно с СПбГПУ была внедрена паровая винтовая турбина с мощностью асинхронного генератора 1000 кВт в производственной котельной ОАО «НПФ «Пигмент» (рис. 3). В настоящее время машина находится в опытнопромышленной эксплуатации в условиях реального производства, вышла на максимальную проектную мощность и показала свою работоспособность и эффективность.

При условии обеспечения расхода пара для технологических и отопительных нужд выдача активной электрической мощности в сеть предприятия колебалась от 320 до 808 кВт, среднечасовая мощность составила 563,3 кВт, общая наработка - 5 тыс. ч, а стоимость выработанной электроэнергии - 0,21 руб./кВт.ч. Расчетный срок окупаемости установки составляет 18 мес. при годовой наработке 6 тыс. ч и средней мощности 600 кВт.

Таблица. Рабочие характеристики ПВМ в зависимости от параметров пара в котельной.

Давление

впуска,

ата

Давление

выпуска,

ата

Расход

пара,

т/ч

Мощность,

кВт

12 2 5-24 320-1500
12 8 20-40 350-700
30 2 4-20 400-1900
10 3 8-36 330-1540
10 6 15-30 310-620
8 6 16-32 170-340
6 2 5-24 200-910

Электрическая система отбора мощности энергоустановки при параллельной работе с сетью показала свою высокую надежность. Выдача энергии в электрическую сеть не оказывает дестабилизирующего влияния на сеть. Со стороны энергоснабжающей организации никаких претензий не было.

Получение от ОАО «Ленэнерго» ТУ на подключение энергоустановки в режиме работы параллельно с электрической сетью проходило по упрощенной схеме в связи с тем, что в состав энергоустановки входит асинхронный генератор (АГ).

Асинхронный генератор является обращением обычного серийного асинхронного двигателя с короткозамкнутой обмоткой ротора. Если энергоустановка с ПВМ предназначена для параллельной работы с сетью, то целесообразно применять АГ, который по сравнению с системой ПВМ - синхронный генератор (СГ) обладает рядом преимуществ:

■ отсутствует дорогая и сложная система синхронизации генератора с сетью;

■ значительно упрощается электросиловая часть установки, уменьшается количество релейных защит генератора, т.к. АГ практически не генерирует токов короткого замыкания в энергосистему;

■ АГ не влияет на частоту и форму синусоиды электрических колебаний сети;

■ у АГ отсутствует регулятор возбуждения генератора, а у СГ обязательно наличие устройств возбуждения (теристорное или бесщеточное);

■ АГ обладает меньшими габаритами по сравнению с СГ аналогичных параметров, что позволяет сохранить важную концепцию «малости» энергоустановки с ПВМ;

■ АГ в серийном исполнении в три раза дешевле СГ с аналогичными параметрами, поэтому использование АГ значительно снижает стоимость всей энергоустановки, и, как следствие, сокращает срок окупаемости оборудования.

Экономическая эффективность энергоустановки с ПВМ

Предприятия, имеющие собственные котельные, обычно заинтересованы в приобретении эффективного и быстроокупающегося паросилового электрогенерирующего оборудования по следующим причинам.

1. Высокие цены на электроэнергию, обусловленные тем, что в сетевой тариф заложены дополнительные расходы на эксплуатацию и амортизацию сетей, НДС, прибыль и др. Собственное производство электроэнергии в котельной приводит к некоторому увеличению расхода топлива, однако это окупается низкой стоимостью получаемой электроэнергии, обычно в 4-5 раз дешевле, чем из сети.

2. Вероятность отключения электроснабжения, особенно для предприятий низкой категории электроснабжения. Этот фактор часто значит не меньше (а во многих случаях и больше), чем экономия затрат на оплату электроэнергии.

Расчет экономической эффективности применения ПВМ в котельной показывает, что удельный расход топлива на выработанную электроэнергию составляет 140-145 г у.т./кВт.ч, а срок окупаемости энергоустановки мощностью 800 кВт составляет 1-1,5 года. При увеличении мощности эффективность ПВМ еще больше повышается.

Выводы

1. ПВМ может эффективно применяться для производства электроэнергии в котельных при срабатывании перепада давления пара. Собственное производство электроэнергии в котельной, переоборудованной в мини-ТЭЦ, в несколько раз дешевле, чем покупаемая у электроснабжающей организации. Это объясняется тем, что владелец собственной мини-ТЭЦ не оплачивает расходы на содержание энергосетей, накладных расходов, НДС и плановой прибыли.

2. ПВМ, как паровой двигатель, в диапазоне мощности 200-1500 кВт обладает значительными техническими преимуществами перед паровой турбиной по эффективности, габаритам, стоимости, надежности и безопасности.

3. Для различных условий по пару, определяющих различную мощность ПВМ, используется единая базовая модель машины с соответствующей настройкой на условия конкретной котельной.

4. В процессе роста цен на электроэнергию (0,03-0,05 долл. США/кВт.ч) и приближению их к мировому уровню (0,09-0,12 долл. США/кВт.ч) собственное производство энергии станет более рентабельным.

печатьраспечатать | скачать бесплатно Паровая винтовая машина как средство энергосбережения, С.Р. Березин, В.М. Боровков, В.И. Ведайко, А.И. Богачева , Источник: Журнал «Новости теплоснабжения» №7 (107), 2009 г.,
www.ntsn.ru

скачать архив архив.zip(72 кБт)

Эта статья была опубликована в журнале "Новости теплоснабжения"

Журнал «Новости теплоснабжения» Журнал «Новости теплоснабжения»

Один номер - 643,50 р
(бесплатная доставка почтой)
заказать

Новости Теплоснабжения - это практические рекомендации для оказания конкретной помощи теплоснабжающим организациям, промышленным предприятиям с самостоятельным тепловым хозяйством и соответствующим подразделениям административных органов, отвечающим за качество теплоснабжения. подробнее...



Rambler's Top100

Авторские права на размещенные материалы принадлежат авторам
Тел.(495) 360-66-26 E-mail:
© Портал ЭнергоСовет.ru - энергосбережение, энергоэффективность, энергосберегающие технологии 2006-2017
Возрастная категория Интернет-сайта 18 +
реклама | карта сайта | о проекте | контакты | правила использования статей

Регулятор отопления для зданий для устранения перетопов подробнее