Энергосовет - энергосбережение и энергоэффективность
в Яndex
Главная >> Библиотека технических статей >> Энергетические обследования и энергоаудит >> >>

Анонсы

16.10.17 В Госдуме обсудят повышение энергетической эффективности страны со специалистами отрасли подробнее >>>

16.10.17 В Уфе стартует Российский энергетический форум. Его работа начнется 17 октября подробнее >>>

12.10.17 Открыта регистрация на конгресс «Энергоэффективность. XXI век. Инженерные методы снижения энергопотребления зданий» подробнее >>>

Все анонсы портала

Новое на портале

17.10.17 Минэнерго России опубликовало госдоклад о состоянии энергосбережения в РФ в 2016 году подробнее >>>

10.10.17 ЖКХ: вопросы и ответы // видео подробнее >>>

09.10.17 Развитие электромобильного транспорта в России и мире // аналитика подробнее >>>

06.10.17 Россандарт утвердил справочник НДТ по энергоэффективности подробнее >>>

Все новости портала

Генерация энергии 2017

Еще по теме Энергетические обследования и энергоаудит

Cтраницы: 1 | 2 | следующая >>

Особенности проведения энергоаудита систем теплоснабжения ЖКХ

В.Г. Хромченков, В.А. Рыженков, Ю.В. Яворовский
Московский энергетический институт (технический университет)

АННОТАЦИЯ

В статье обобщены результаты проведенных обследований участков тепловых сетей системы теплоснабжения жилищно-коммунальной сферы с анализом существующего уровня потерь тепловой энергии в тепловых сетях.

1. ВВЕДЕНИЕ

Задачей энергоаудита является:

1) определение источников и причин потерь энергии и нерационального использования энергоресурсов, а также их количественное определение;

2) разработка энергосберегающих мероприятий, выполненная на основании проведенного анализа энергопотребления и технико-экономических расчетов.

На работу системы теплоснабжения ЖКХ страны расходуется более 20 % добываемого топлива. По разным оценкам экономия топлива в данной системе может составить от 30 до 60 %.

Аудит системы теплоснабжения включает в себя аудит источника тепла; аудит транспорта тепла и аудит потребителя тепла. При проведении энергоаудита, необходимо учитывать особенности функционирования каждой из систем.

2. ПОТЕНЦИАЛ ЭНЕРГОСБЕРЕЖЕНИЯ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

2.1. Источник тепла

Возможности энергосбережения на источнике весьма ограничены. Даже капитальная модернизация котельной, связанная с заменой старого котельного оборудования на новое, позволит снизить потери топлива (на газовых котельных) на 3-5 % в зависимости от состояния котлов. С учетом возможных схемных и других решений, направленных на энергосбережение, можно на 2-5 % снизить расход тепла на собственные нужды котельной. В итоге максимальная суммарная экономия топлива может составить (как правило) не более 5-10 %. Обычное же значение экономии не превышает 3-5 %, причем чем крупнее котельная, тем меньшую величину относительной экономии можно получить.

2.2. Потребитель тепла

Основные энергосберегающие мероприятия, которые приводят к существенному снижению расхода тепла у промышленных и жилищно-коммунальных потребителей, известны. К ним в первую очередь относятся установка современных автоматизированных ИТП и повышение сопротивления теплопередаче ограждающих конструкций зданий с установкой современных типов окон с

двойным и тройным остеклением стеклопакетами, что также резко снижает потери тепла с инфильтрацией. Суммарная экономия тепла, связанная только с реализацией этих мероприятий может составить 20-40 % в зависимости от состояния инженерных систем теплоснабжения зданий до модернизации, климатических условий данного региона и т.д.

2.3. Транспорт тепла

Основным мероприятием, связанным со снижением тепловых потерь при транспорте теплоносителя по протяженным трубопроводам является замена старой, пришедшей в негодность, тепловой изоляции на современную новую. Нередким случаем является и отсутствие тепловой изоляции вовсе. В случае неудовлетворительного состояния самих трубопроводов, что характеризуется количеством порывов, приходящихся на 1 км тепловой сети в течение года, целесообразно выполнить их замену. При этом широкое распространение в последние годы получил бесканальный метод прокладки труб с пенополиуретановой изоляцией в полиэтиленовой оболочке.

2.4. Особенности аудита системы теплоснабжения

Система транспорта теплоносителя связывает систему производства и потребления тепла в одно целое. Поэтому несмотря на то, что при проведении энергоаудита задача по определению потерь тепла в каждой из указанных систем решается локально и независимо друг от друга, при расчете физической и финансовой экономии необходимо рассматривать всю систему в целом с учетом взаимного влияния систем друг на друга, что далеко не всегда выполняется.

Два примера. При определении экономии тепла, в физических единицах, например? у потребителя, в результате предложенных в процессе энергоаудита энергосберегающих мероприятий, экономию финансовых средств и, как результат, сокращение срока окупаемости, очень часто определяют по стоимости тепла. Это правильно только в случае покупного тепла от внешнего источника. Как правило, котельные входят в состав МУП ЖКХ. В этом случае экономическая эффективность данного мероприятия должна определяться практически только по величине сэкономленного на источнике топлива, доля которого в структуре себестоимости составляет 30-40 %. Таким образом, срок окупаемости одного и того же мероприятия может отличаться очень сильно в зависимости от принадлежности источника тепла.

Второй пример. Для конкретного здания в соответствии с предложенным проектом, например, установки автоматизированного теплового пункта, рассчитана величина экономии тепла, полученная за счет исключения перетопов во время осеннего и весеннего периодов (Гкал). Действительно, для данного здания эта экономия в рассчитанном объеме имеет место. Однако при определении реальной экономии, как было отмечено выше, необходимо рассматривать всю систему теплоснабжения в целом. В связи с качественным регулированием отопительной нагрузки и постоянным расходом теплоносителя в системе его сокращение для конкретного здания приведет к увеличению расхода сетевой воды у других потребителей, не оборудованных автоматизированными ИТП. В конечном итоге это приведет к диссипации в том или ином объеме сэкономленного тепла. Таким образом, реальная экономия топлива в котельной может быть существенно ниже расчетного значения вплоть до отсутствия экономии.

3. ОСОБЕННОСТИ АУДИТА ТРАНСПОРТА ТЕПЛА

3.1. Определение тепловых потерь при транспорте теплоносителя

Одной из основных задач аудита транспорта тепла является определение потерь тепла в этом процессе, что является важной задачей, результаты решения которой оказывают серьезное влияние в процессе формирования тарифа на тепло. Знание этой величины позволяет также правильно выбирать мощности основного и вспомогательного оборудования ЦТП и, в конечном счете, источника тепла. Величина тепловых потерь при транспорте теплоносителя может стать решающим фактором при выборе структуры системы теплоснабжения с возможной ее децентрализацией, выборе температурного графика тепловой сети и др. Определение реальных тепловых потерь и сравнение их с нормативными значениями позволяет обосновать эффективность проведения работ по модернизации тепловой сети с заменой трубопроводов и/или их изоляции.

3.2. Нормативные потери тепла

До приказа Минпромэнерго № 265 от 4 октября 2005 года [1] величина относительных тепловых потерь теплоснабжающими организациями принималась без достаточных на то обоснований. Обычно задавались значениями относительных тепловых потерь часто кратными пяти (10 и 15 %). В соответствии с указанным приказом все теплоснабжающие организации рассчитывают нормативные потери с поверхности изоляции трубопроводов, если нет данных по экспериментальному определению величины тепловых потерь. Нормируются также и потери тепла с утечками теплоносителя.

Нормативные потери тепла с поверхности изоляции трубопроводов напрямую учитывают основные влияющие факторы: длину трубопровода, его диаметр и температуры теплоносителя и окружающей среды. Не учитывают только фактическое состояние изоляции трубопроводов. Знание реальных тепловых потерь очень важно, так как они, как показал наш опыт, могут в несколько раз превышать нормативные значения. Такая информация позволит иметь представление о фактическом состоянии тепловой изоляции трубопроводов тепловой сети, определить участки с наибольшими тепловыми потерями и рассчитать экономическую эффективность замены трубопроводов. Кроме того, наличие такой информации позволит обосновать реальную стоимость 1 Гкал отпущенного тепла в региональной энергетической комиссии. Однако если тепловые потери, связанные с утечкой теплоносителя, можно определить по фактической подпитке тепловой сети при наличии соответствующих данных на источнике тепла, то определение реальных потерь тепла с поверхности изоляции трубопроводов является весьма непростой задачей.

3.3. Фактические потери тепла

В соответствии с [2] для определения фактических тепловых потерь на испытываемых участках двухтрубной водяной тепловой сети и сравнения их с нормативными значениями должно быть организовано циркуляционное кольцо, состоящее из прямого и обратного трубопроводов с перемычкой между ними. Все ответвления и отдельные абоненты должны быть от него отсоединены, а расход на всех участках сети должен быть одинаков. При этом минимальный объем испытываемых участков по материальной характеристике должен быть не менее 20 % материальной характеристики всей сети, а перепад температур теплоносителя должен составлять не менее 8 °С. Таким образом должно образоваться кольцо большой протяженности (несколько километров).

Учитывая практическую невозможность проведения испытаний по данной методике и выполнения ряда ее требований в условиях отопительного периода, а также сложность и громоздкость, нами предложена и с успехом много лет используется методика тепловых испытаний, основанная на простых физических законах теплопередачи. Суть ее заключается в том, что, зная снижение («сбег») температуры теплоносителя в трубопроводе от одной точки измерения до другой при известном и неизменном его расходе, несложно вычислить потерю тепла на данном участке тепловой сети. Затем, при конкретных температурах теплоносителя и окружающей среды в соответствии с [2] полученные значения тепловых потерь пересчитываются на среднегодовые условия и сравниваются с нормативными, также приведенными к среднегодовым условиям для данного региона с учетом температурного графика теплоснабжения. После этого определяется коэффициент превышения фактических потерь тепла над нормативными значениями.

В таблице представлены результаты обследования 5 участков тепловой сети г. Тюмень (кроме расчетов нормативных потерь тепла, нами также были выполнены измерения фактических тепловых потерь с поверхности изоляции трубопроводов). Первый участок представляет собой магистральный участок тепловой сети с большими диаметрами трубопровода и соответственно большим расходом теплоносителя. Все остальные участки сети — тупиковые. Потребителями тепла на втором и третьем участке являются 2- и 3-этажные здания, расположенные по двум параллельным улицам. Четвертый и пятый участки также имеют общую тепловую камеру, но если в качестве потребителей на четвертом участке имеются компактно расположенные относительно крупные 4- и 5-этажные дома, то на пятом участке — это частные одноэтажные дома, расположенные вдоль одной протяженной улицы.

Cтраницы: 1 | 2 | следующая >>

печатьраспечатать | скачать бесплатно Особенности проведения энергоаудита систем теплоснабжения ЖКХ, В.Г. Хромченков, В.А. Рыженков, Ю.В. Яворовский , Источник: Труды конференции «Повышение надежности и эффективности эксплуатации электрических станций и энергетических систем», 2010 г., МЭИ,
www.energy2010.mpei.ru

скачать архив архив.zip(12 кБт)


Rambler's Top100

Авторские права на размещенные материалы принадлежат авторам
Тел.(495) 360-66-26 E-mail:
© Портал ЭнергоСовет.ru - энергосбережение, энергоэффективность, энергосберегающие технологии 2006-2017
Возрастная категория Интернет-сайта 18 +
реклама | карта сайта | о проекте | контакты | правила использования статей

Регулятор отопления для зданий для устранения перетопов подробнее