Энергосовет - энергосбережение и энергоэффективность
в Яndex
Главная >> Библиотека технических статей >> Экономия тепловой энергии >> >>

Анонсы

17.11.17 Заседание Рабочей группы по синхронизации отраслевого и коммунального законодательства по вопросам начислений за ресурсы и коммунальные услуги подробнее >>>

13.11.17 Шорт-лист Премии WinAwards Russia/«Оконная компания года-2017»! подробнее >>>

13.11.17 Инновационные технологии обсудят на панельной дискуссии конгресса в Санкт-Петербурге подробнее >>>

Все анонсы портала

Новое на портале

13.11.17 Юбилейный 50-й выпуск журнала "ЭНЕРГОСОВЕТ" посвящен конференции "Теплоснабжение-2017. Функционирование в новых условиях" подробнее >>>

07.11.17 Страна поставлена "на счётчик" // видео подробнее >>>

02.11.17 Энергоэффективный капремонт: миф или реальность? // интервью подробнее >>>

20.10.17 На заседании в Правительстве РФ обсудили энергосбережение и повышение энергетической эффективности подробнее >>>

Все новости портала

Еще по теме Экономия тепловой энергии

Cтраницы: 1 | 2 | следующая >>

Энергосбережение при применении современных волокнистых огнеупорных и теплоизоляционных материалов и систем отопления в промышленности

Оснос С.П., Котлицкая Ю.И.

Введение.

Настоящая статья посвящена наиболее актуальным вопросам решения задач энергосбережения в наиболее энергоемких отраслях промышленности машиностроении, металлургии, химической промышленности, промышленности строительных материалов и эергетике. В статье отражен большой опыт применения современных материалов и технологий энергосбережения накопленный рядом ведущих организаций Украины при решении практических задач энергосбережения в промышленности: Украинским научно-исследовательским институтом электротермии (УкрНИИЭлектротерм), Научно-исследовательским институтом стеклопластиков и волокна (НИИ СВ) и Институтом газа Академии наук Украины. Использование опыта этих организаций с применением современных материалов, производимых украинской промышленностью, позволит предприятиям Украины добиться значительной экономии энергоресурсов, снизить себестоимость и повысить качество выпускаемой продукции.
Известно, что до 80 – 85% энергоносителей в промышленно развитых странах расходуется в промышленности и энергетике при эксплуатации промышленных печей, термического и энергетического оборудования. Поэтому в настоящее время задача экономии энергоресурсов, особенно, в энергоемких отраслях промышленности: металлургии, машиностроении, химической промышленности, на предприятиях, производящих строительные материалы и керамику, в энергетике стоит необычайно остро и актуально.

Одним из комплексных направлений решения задачи энергосбережения, позволяющего существенно снизить энергопотребление при эксплуатации парка печей и термического оборудования, является применение волокнистых футеровочных и теплоизоляционных материалов и экономичных систем отопления. Волокнистые материалы - это материалы нового поколения, которые сочетают в себе высокотемпературные, огнеупорные и изоляционные свойства, низкую теплопроводность и малоинерционность, что позволяет широко применять их вместо традиционных материалов для футеровки практически всего парка термического оборудования. Основой для производства волокнистых материалов являются муллитокремнеземистые и базальтовые волокна с применением высокотемпературных неорганических связующих.

Все волокнистые материалы обладают эластичностью, малой кажущейся плотностью и малой теплопроводностью, трещиноустойчивостью, значительной прочностью на разрыв и на изгиб (особенно мягкие и полужесткие), термостойкостью. Основные характеристики волокнистых огнеупорных и теплоизоляционных материалов представлены в таблице 1.

Таблица 1.

Наименование

Кажущаяся плотность, кг/м3

Максимальная температура применения,°С

Теплопроводность, Вт/м при температуре

100°С

400°С

700°С

1000°С

1200°С

Муллитокремнеземистый войлок

200

1150

0,07

0,12

0,17

0,33

0,53

Муллитокремнеземистая плита

450

1260

0,09

0,17

0,22

0,30

0,43

Маты базальтовые АТМ-10т*

65

700

0,049

0,104

0,174

---

---

Плиты базальтовые из БСТВ*

140

700

0,047

0,095

0,155

---

---

Плиты базальтовые из БТВ**

240

700

0,052

0,120

0,171

---

---

Примечания:
*- материалы из супертонкого базальтового волокна с диаметром волокон 1 – 3 мкм.

**-материалы из тонкого базальтового волокна с диаметром волокон 6 – 9 мкм.

Изделия из волокнистых материалов позволяют создать новые, легкие конструкции футеровок стен и сводов, являясь при этом и огнеупором и теплоизоляцией. Низкая теплопроводность позволяет уменьшать габариты печи за счет толщины футеровки, что в сочетании с низкой плотностью делает возможным в несколько (до 10) раз снизить массу футеровки печи. Аккумулируемая во время разогрева теплота, таким образом, уменьшается также в несколько раз. Резко сокращается время разогрева печи, позволяя экономить не только энергоресурсы, но и уменьшая непроизводительное время работы печи и обслуживающего персонала. Поэтому волокнистые материалы называют ещё малоинерционными. Особенно эффективно их применение в термических печах периодического действия, с постоянными колебаниями температуры печного пространства и в печах, работающих не в полную загрузку, в так называемом «рваном режиме».

Применение волокнистых материалов нового поколения на неорганических связующих обеспечивает значительное снижение трудоемкости футеровочных работ и высокую ремонтопригодность футеровки при ее механическом повреждении. Эти материалы легко обрабатываются и не критичны к циклам нагрев - охлаждение. Количество термосмен составляет 1000 - 2000 без видимых изменений качества материала.

Футеровка из волокнистых материалов часто выполняется многослойной. Например, внутренний слой представляет собой плиту из муллитокремнезёмистого волокна на высокотемпературном неорганическом связующем, второй слой, один из самых дешевых материалов, перлитобентонитовый кирпич, а третий слой выполнен в виде плиты из базальтового волокна. Многослойность футеровки обусловлена тем, что в ней используются лучшие качества всех материалов. Первый рассчитан на более высокую температуру эксплуатации, у следующих слоев ниже теплопроводность в данном интервале температур и, кроме того, они дешевле. Таким образом, при применении многослойных футеровок из волокнистых материалов можно добиться оптимального соотношения цены и качества.

Следующим существенным достоинством волокнистых огнеупорных материалов на основе муллитокремнеземных волокон является высокая степень черноты, для диапазона температур 1000 – 1200°С он составляет 0.9 - 0.95. Для сравнения степень черноты шамота, при тех же температурах, составляет 0.6 – 0.72. Это качество волокнистых материалов позволяет создавать на их основе печи с системами радиационного нагрева. Такие системы включают плоскопламенные и дискофакельные газовые горелки и футеровку из волокнистых огнеупорных материалов, на раскаленной поверхности которой происходит полное и эффективное сгорание газа с радиационным излучением тепловой энергии во внутренний объем печи. Системы радиационного нагрева обеспечивают равномерный нагрев, значительное снижение образования окалины на термообрабатываемых изделиях из металла.

Комплектация системы газоснабжения печей регуляторами-пропорционализаторами соотношения газ – воздух позволяет поддерживать необходимое соотношение подаваемых в горелку компонентов горючей смеси, что обеспечивает качественное сжигание топлива на различных режимах работы печи. Это способствует повышению эффективности использования топлива и снижению концентрации в продуктах сгорания СО и NOx.
Применение рекуперативных, регенеративных устройств, систем внутренней рекуперации, утилизирующих тепло отходящих продуктов горения позволяет обеспечить экономию топлива на 15 – 20 %. К таким системам относится:

-компактные трубчатые и щелевые рекуператоры, отличающиеся высокой эффективностью;

- рекуперативные горелки;

- печи с внутренней рекуперацией, которая обеспечивается в проходных печах особой, П – образной, конструкцией печи либо противотоком при движении садка – продукты сгорания.

Применение рекуператоров и рекуперативных горелок для подогрева воздуха горения продуктами сгорания позволяет уменьшить расход топлива на 15-20%: Внутренняя рекуперация в проходных печах, если это допускается технологией термообработки, даёт ещё большую экономию. В электрических проходных П-образных печах, при принятии соответствующих инженерных, конструкторских решений, за счет зон рекуперации отмечается снижение потребления электроэнергии до 40%.

Экономию топливо-энергетических ресурсов дает применение котлов –утилизаторов. Тепло нагретой в них воды отходящими продуктами горения используется на промышленных предприятиях, как для технических, так и бытовых целей.

Автоматизация процессов нагрева в печах различного назначения также приводит к экономии энергии топлива и электроэнергии. Оснащение тепловых агрегатов автоматизированными системами управления технологическими и теплотехническими процессами на базе управляющих контроллеров дает возможность наиболее экономично вести технологический процесс, оптимизировать работу печи, термического оборудования и получить экономию энергоносителей до 5 –10 %, а также добиться высокого качества выпускаемой термообрабатываемой продукции.

В некоторых случаях целесообразно применение принудительной конвекции с целью сокращения времени термообработки (как нагрева, так и охлаждения), что дает не только существенную экономию энергоносителей, но и повышает производительность термического оборудования.
Степень эффективности методов по снижению энергопотребления в промышленных печах представлена в таблице 2.

Cтраницы: 1 | 2 | следующая >>

печатьраспечатать | скачать бесплатно Энергосбережение при применении современных волокнистых огнеупорных и теплоизоляционных материалов и систем отопления в промышленности, Оснос С.П., Котлицкая Ю.И., Источник: ООО "УкрНИИЭлектротерм",
www.niiterm.com

скачать архив архив.zip(15 кБт)


Rambler's Top100

Авторские права на размещенные материалы принадлежат авторам
Тел.(495) 360-66-26 E-mail:
© Портал ЭнергоСовет.ru - энергосбережение, энергоэффективность, энергосберегающие технологии 2006-2017
Возрастная категория Интернет-сайта 18 +
реклама | карта сайта | о проекте | контакты | правила использования статей

Регулятор отопления для зданий для устранения перетопов подробнее